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MOTIVATION

@ Unsteady CFD flow calculations are computationally expensive when
compared to steady flow calculations

@ Conflicting interests: We want adequate spatial & temporal accuracy
but we don’t want to pay the price (Excessive CPU time)

® The computational mesh drfv'és the cost of CFD calculations and
should be optimized for each flow condition. This suggests that
solution algorithms should be closely tied with grid generation

@ How do we optimize the mesh? Distribute the numerical error evenly
throughout the mesh

@ Use adaptive meshing to evenly distribute the spatial discretization
errors

- locally enrich in regions of relatively large errors
- locally coarsen In regions of relatively small errors

ENRICHMENT INDICATOR FOR THE SPATIAL ADAPTATION PROCEDURES

@ Discretization errors generally occur where flow gradients are relatively
large

- shock waves

- stagnation points
- slip lines

- expansion fans

® Magnitude of the gradient of density was used to detect relatively large
flow gradients in 2D & 3D
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OVERVIEW OF 2D MESH ENRICHMENT STRATEGIES

@ Type-4 enrichment element
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@ Type-2 enrichment element
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OVERVIEW OF 2D MESH ENRICHMENT STRATEGIES

@ Further enrichment of a type-2 enrichment element
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OVERVIEW OF 2D MESH COARSENING STRATEGIES

three nods removed from a type-4 element
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two nodes removed from a type-4 element
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one node removed from a type-2 element

OVERVIEW OF 3D MESH ENRICHMENT STRATEGIES

@ Type-8 enrichment element




OVERVIEW OF 3D MESH ENRICHMENT STRATEGIES

@ Further enrichment of a type-2 enrichment element
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OVERVIEW OF 3D MESH ENRICHMENT STRATEGIES

@ Further enrichment of a type-4 enrichment element

type-4 type-8
elemem element
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OVERVIEW OF 3D MESH COARSENING STRATEGIES

@ Type-8 element coarsening
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@® Type-4 element coarsening

AN/

® Type-2 element coarsening
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DESCRIPTION OF 2D & 3D UPWIND-TYPE EULER ALGORITHM OF BATINA

® Finite-volume spatial discretization on unstructured-grids

- triangles in 2D
- tetrahedra in 3D

@ flux vector splitting of van Leer
@ Flux limiting to suppress oscillations near shock waves

® Time integration may be either explicit Runge-Kutta scheme or implicit
Gauss-Seidel relaxation scheme

@ Implicit scheme allows very large CFL numbers for rapid convergence
to steady state

® Choose time step for unsteady caiculations based on physics of
problem rather than numerical stability




OVERVIEW OF SPATIAL ADAPTATION RESULTS

@® Two dimensional case
- Shock diffraction problem
@® Three dimensional cases

- ONERA M6 wing
- Shock-tube problem

INSTANTANEOUS MESH AND DENSITY CONTOUR LINES FOR THE
SHOCK DIFFRACTION PROBLEM

® M, =2.81
® Ap=0.2
. t= t1 . t= t2
Incident Shock
Shock Triple — -
Wave Point
Mach
- Cylinder Reflected —— Shock
~ S el

\
— — <
R, X S
s S “:“ 5 "“:‘s’“‘w‘
: A5
‘i“!.. euﬂ.,u‘ﬂ'cuue‘s-
AR ,m keosiiedood

OO XA XIS
(X .. 4"95"
‘. (OO au
2 .?”s S

0% o

!cfeftfs;
&

X

147
EN
S

3, at

283



INSTANTANEOUS MESH AND DENSITY CONTOUR LINES FOR THE
SHOCK DIFFRACTION PROBLEM

o M, =281

® Ap=0.2

Contact
Discontinuity
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INSTANTANEOUS MESH AND DENSITY CONTOUR LINES FOR THE
SHOCK DIFFRACTION PROBLEM

® M, =281
. Ap =0.2
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COMPARISON OF SHOCK TRIPLE POINT LOCATIONS WITH
EXPERIMENTAL DATA

@ Experimental data by Bryson and Gross, Journal of Fluid Mechanics,
vol. 10, pp. 1-16, 1961
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PARTIAL VIEW OF THE SURFACE MESHE FOR THE SYMMETRY PLANE
AND THE ONERA M6 WING

@ Total mesh has 46,516 tetrahedra and 8,824 nodes
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COMPARISON OF UPPER SURFACE MESHES FOR THE ONERA M6 WING

® M= 0.84, 0 = 3.06°

@ Original mesh ® 1level ® 2levels

COMPARISON OF UPPER SURFACE DENSITY CONTOUR LINES
FOR THE ONERA M6 WING

® M_=0.84, o, = 3.06°

@ Ap =0.025

@ Original mesh ® 1level @® 2levels
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COMPARISON OF COEFFICIENT OF SURFACE PRESSURE

FOR THE ONERA M6 WING
® M._=0.84, o, = 3.06°
® 1 =0.80
@ Original mesh ® 1level @ 2levels
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ILLUSTRATION OF THE SHOCK-TUBE PROBLEM
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SURFACE MESH FOR THE SHOCK-TUBE PROBLEM

@ Total mesh contains 562 nodes and 1,800 tetrahedra
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INSTANTANEOUS SURFACE MESH AND DENSITY CONTOUR LINES FOR
THE SHOCK-TUBE PROBLEM

Time = 0.1




COMPARISON OF THE VARIATION OF DENSITY, VELOCITY, AND
PRESSURE THROUGHOUT THE SHOCK-TUBE

@ Solution at time t = 0.1

@ Original mesh @ Adapted mesh
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COMFARISON OF THE VARIATION OF DENSITY, VELOCITY, AND
PRESSURE THROUGHCUT THE SHOCK-TUBE

@ Solution attime t=0.3

[ Original mesh @ Adapted mesh
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SUMMARY

@ Final solution adapted mesh depends on the original mesh
- adapted mesh cannot be coarser than the original mesh
@ Enrichment/Coarsening procedures are robust for isotropic cells;
however, enrichment of high aspect ratio cells may fail near boundary
surfaces with relatively large curvature

@ Enrichment indicator worked well for the cases shown, but in general
requires user supervision for a more efficient solution
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